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The energy exchange between the inner and the outer degrees of freedom 
takes place during state changes in gases and gas mixtures; and it h-ns 
so fast that the details of the time-dependent events don’t matter for 
many technical processes. This does not, however, apply for state changes 
when the gases become rarefied. When the pressure is  sufficiently 
lowered, one can observe how, at first, the translational degrees of 
freedom of the molecules adjust to the new state and then, almost at the 
same time, the rotational degrees of freedom follow. The adjustment of 
the new vibrational state comes later in a most pronomced way. I f  one 
ignores the effect of radiation fields which may be present, then the 
changes in state are caused by the collisions of the molecules wi th  one 
another. Thus, there are three possibilities for the change in the 
vibrational state. VT-coll isions cause translational energy to be 
converted into vibrational energy. In the same manner, VR-collisions can 
cause rotational energy to be translated into vibrational degrees of 
freedom. These energy transfer processes are seldom differentiated 
experimentally which is why they are most often described in terms of 
VT-collisions. The third possibility for the energy exchange is given in 
terms of VV-collisions where a molecule can donate vibrational energy to 
the vibrational degrees of freedom of another molecule. As of today, many 
of tbese processes are not precisely understood. The vibrational energy 
exchange between various degrees of freedom is of technical interest 
wherever rarefied gases are encountered. This is often the case in space 
travel, for example, also for currents in shock tubes and wind tunnels. It 
is also in measuring techniques that these processes play an important 
role. For example, the results of laser fluorescence measurements can be 
influenced by the coli ision de-exci tat ion of molecule vibrations. Some 
gases, furthermore, possess catalytic characteristics in their excited 
vibrational states wi th  respect to  chemical reactions. One of the most 
Important areas of application, however, should be the development of 
molecular lasers. 

While it is often possible to start from a momentary or localized energy 
equilibrium distribution for the translational- and the rotational degrees 
of freedom, even at substantial deviations from the thermodynamic 
equilibrium, one can Just as frequently not justify this prerequisite for 
the degrees of vibrational freedom. The validity of such assumption must 
at least be carefully checked where energy transfer rates from 
VV-collisions reach the same magnitude as the energy transfer rates from 
VT-collisions. It i s  certain that there w i l l  be disturbances in the 
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Boltzmann distrlbutlon of the vibrational energy wherever there are strong 
radiation fields, as Is the case in molecular lasers. In Chapter 4.2., C02- 
laser crossings are examined which could be activated only under the 
prerequisite that there is a disturbance in the Boltzmann distribution of 
the degrees of freedom. 

The objective of this dissertation is  the development of a mathematical 
model which describes the vibrational energy exchange in flowing gas 
mixtures. This w i l l  take into account a given number of energy levels for 
each vibrational degree of freedom. Thenumber of these energy levels can 
be arbitrarily chosen. In the model chosen here, the values from IO to 40 
were used. The energy distribution beyond these levels can deviate from 
the equilibrium distribution. 

In Chapter 4.1 ., the validity of the model is proven through the example of 
a so-called cross-current C02-laser wi th  high-frequency excitation, for 
which experimental results from literature are available. 
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2. GeneralFormulatiMI 

In this chapter, a kinetic model is developed which is applicable to  any 
arbitrary gas mixtures wi th  an arbitrary number of vibrational degrees of 
freedom per kind of gas. For the purpose of a more simplified, systematic 
treatment, the energy exchange reactions are divided into three 
categories: 

- VT-collisions which lead to the energy transfer within the 
particular vibrational degrees of freedom. 

- VV-collisions between different kinds of molecules. 

- VV-collisions which lead to an equilibrium between two different 
vibrational degrees of freedom of a molecule. 

F o r  the pwpose of better differentiation, the last category i s  going to be 
designated as the V-reaction in this paper. The VR-collisions are going to 
be assigned to the VT-collisions, as mentioned in the introduction. 

2.1. RateEauationsanhDensitvDistribution Chanaes 

A gas mixture is considered which consists of N different types of gas. 
Each type of gas n shows In non-degenerated vibrational degrees of 
freedom wi th  M energy levels. Degenerated vibrational forms are treated 
like simple degrees of freedom, but wi th  twice the vibrational energy at a 
constant rate of transfer. Thus the number of VT-reactions between the 
ground state and the first excited vibrational state is given by 

N J = z  I" 
n= 1 

and the total number of all VT-reactions is given by the product 
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In general, the reaction velocity constants for al l  molecule combinations 
w i l l  be different, so that one requires JeN velocity constants for al l  of the 
VT-reactions. From this, one can determine, as w i l l  be shown in Chapter 
2.3.2., the velocity constants for vibrational energy levels of higher 
excitation and for al l  reactions in the opposite direction. In accordance 
wi th  the division into the three reaction categories, there is a need for K 
reaction velocity constants for the VV-reactions. V-reactions may 
proceed, just like the VT-reactions, wi th any arbitrary collision partners, 
so that now there Is a need for L N veloclty constants for L different 
V-reac t ions. 

I f  the matrix of the concentration is designated as C, having J columns - 
corresmding to  the total number of al l  vibrational degrees of freedom - 
and M lines - correspomling to  the number of energy levels taken into 
account - , then one obtains for the concentration wi th  respect to change 
with time 

(2.1.-1) dC I t . - . - +  1 d p  D . 
d t  P d t  

The term C b/p taking into account the change in concentration due to  
change in density, and the matrix D which, l ike C, shows J columns and M 
lines, describes the transfer of matter in the reactions. There should be 
no significant gradients of the magnitudes of state perpendicular t o  the 
direction of flow, so that one deals with a mi-dimensional f low pattern. 
Matrix D is composed in accordance wi th  the classification of reaction 
categories as follows: 

Thus, al l  A i  numbers represent matrices which describe the qualitative 
transfer of matter in the reactions, Matrix DvT contains al l  transfer 
rates of the VT-reactions in J columns and in M-1 lines, and vectors avv and 8~ contain the K and L transfer rates of the remaining 
reactions. Matrix Am i s  put together in  accordance with 

-1 fur j = i 
i I , ? ,  ..., ( M - 1 )  
j = 1,2.. .., M 

0 fur j L i ,i+1 
+1  fur j = i t 1  

The matrices AVV and AV, on the other hand, have a three-dimensional 



structure which i s  shown in Fig. 2.1 .- 1, These matrices contain for 
certain values k, I at the location ],m the number I in space; this number 
has in the concentration matrix C an element C which is formed in the 

reaction k,l; they attain the number -1, wherever there is  in C an 
element Cj,m which shows an initial substance in the same reaction k, 1. 

jlm 

I 

M 

T 

A l l  other 

I t 
4,"" 

matrix 

I 
4 J -1 

Fig. 2.1 .- 1 

Structure of the reaction matrix AV and AvV 
Multiplying the transfer vector avlVv by sub-m-tri 
the plane transfer matrices i?v,vv. 

es U]v,vv le,ds to  

The multiplication wi th  the transfer vectors DVVJ has to  be performed in 
such a way that each sub-matrix Ujvv,v is multiplied byaVv," What 
results, 1s a matrlx with J columns and M lines. The transfer rates of 
the VT-reactions which form the matrlx Dm are calculated according to  

where c,, stands for the momentary total concentration of gas type n. 
Since chemical reactions are not taken into account, c,, changes only wi th 



a change in density. The transfer rates of the remaining reactions which 
form the vector ~ V V , V ,  are calculated according to 

and 

The indices run from 1 t o  K,L. The designation CA stands for those 
concentrations Cj,m for which aV(J,m,l)>O, and CB stands for those 
concentrations for which av( j,mJ h0 . Generally, H stands for the 
reaction velocity constant of the endothermic reaction path and R stands 
for the constant of the opposite reaction. Quantum mechanics provides the 
connection between H and R asfollows: 

H = R - exp(-AE/RT) . (2.1 .-6) 

Instead of concentrations, one frequently finds density distributions. The 
relationship between these two values is given by 

n = Cm N,, m 

where nm stands for the density distribution of a level m and NA stands 
for Avogadro's constant. In cases of equilibria, the density dlstribution of 
levels of a vibrational degree of freedom are described by a Boltzmann 
distribution which is unequivocally determined by a given characteristic 
vibrational temperature 9 for the degree of freedom and by a momentary 
vibrational temperature T,ib For the finite number M of energy levels, 
one obtains that portion of molecules situated in state rn by the 
relationship 
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where the index m can assume the values 0, 1,2, ........., M-1. 

For a Boltzmann distribution to  exist, there is no need for thermodynamic 
equilibrium. With deviations from thermodynamic equilibrium, al l  degrees 
of freedom can qualify for a Boltzmann distribution where there is, in 
general, one particular local or momentary vibrational temperature TVib 
for each vibrational degree of freedom. This is surely the case when the 
reaction velocity constants for the VV- and the V-reactions are 
substantially smaller than the velocity constants for the VT-reactions of 
the corresponding energy levels. One can, however, imagine cases where 
the Boltzmann distribution is  disturbed by rapid VV- and V-reactions. 
This means that the complete coupled differential equation system must 
be solved, wi th  the reaction-kinetic part given by equations (2.1 .- 1)  
through (2.1 .-6). 

2.2 MationEwattMIs 

For cross-sectional changes, provided they don't occur too quickly, one can 
treat the flow of gas mixtures in a mi-dimensional form. Thus, the 
conservation equations for mass-, impulse-, and energy flow are 

( P u 2 +  p) A * ( p 1 u l 2 + p 1 )  A l  , (2.2.-2) 

1 2  1 2  
p . u * A ( h t - u  ) * p l  ulA1 (hl + T u l  ) . (2.2.-3) 2 

The designations p, u, and A stand for the momentary or local values of the 
gas density, for the flow velocity, and for the cross-sectional flow. The 
index 1 designates an init ial state. In this paper, only flow in tubes wi th  
constant cross section is given consideration, so that 

A = A 1  

The density in the systems under consideration i s  so low that the thermal 
state equation for ideal gases 

p = R - p - T  



can be used. The change in enthalpy Ah - h-hl is  developed in the form 

where bevib is the change in the vibrational energy. The factor 6 takes 
care of the fact that eventually the admixed atomic gases w i l l  no longer 
possess any rotational degrees of freedom. lfyA is the mole fraction for 
molecular gases andy~ is the mole fraction for atomic gases in the 
mixture, then the relationship for the factor6 is given by 

whereyA +TB = I and 517 4 6 5, I . For time-related changes of the total 
density p, of the gas temperature T , and of the vibrational energy AeVjb 

for the gas mixture, there are the following relationships wi th  the help of 
the conservation equations: 

and 

D1 stands for the transfer rate of reaction j, and El for its heat effect. 
For the f low velocity u , one immedlately obtains u = u p /p from the 

continuity equation. 



One can, similar to  chemical reactions, determine temperature-dependent 
velocity constants for the energy exchange between degrees of freedom in 
gases. Such quantities are measured. If this is  not possible, then they 
have to  be calculated theoretically. The application of reaction velocity 
constants for the energy exchange between the degrees of freedom in 
gases is not normally used. More often, one finds these processes 
characterized by relaxation times or transition probabilities. Transition 
probability Pn,m , obtained through a molecular velocity distribution, 
shows the probability at which a gas-kinetic collision of two particles 
evoke a change of the vibrational state from n to m of one of the two 
particles. With the help of quantum mechanics one can show that the 
exchange of more than one vibrational quantum per collision is relatively 
unlikely. In the same manner, one can show with the help of the kinetic 
gas theory that, a t  low densities and not excessively high temperatures, 
the collision of more than two particles is rare in comparison to the 
collision of two particles. This means that the distribution density 
change of any arbitrary energy level n of a degree of freedom can be 
described by the rate equation 

where 2 stands for the frequency of collision of the given molecular 
velocity distribution. The following assumes that this is always a 
Maxwell velocity distribution. With the help of quantum mechanics, one 
obtains for the transition probabilities 

'nt1 ,n = ( n + l ) . P , , ,  

and (2.3.-2) 

-O/T 
P0,l = 5 . 0  * e  (2.3.-3) 

where 8 stands for the characteristic vibrational temperature of the 
degree of freedom under consideration, and T stands for the gas 
temperature. By multiplying the distribution density change by the 
corresponding level energy 



Aen = R*Wn + 1 /2) , and by subsequent summation across al l  levels N , 
where N is finite, one obtalns for the change in the total vibrational 
energy of the degree of freedom under consideration 

Aevib A Z V i b -  hevib 
- =  
R O - d t  R O  

With the help of the statement 

* Aevib A F v i b  - A e v i b  
- I  

d t  'vib 1 
one eventually obtains 

(2.3.-4) 

with 

N stands for the fintte number of available e k g y  levels, 0 for the 

energy level and for the osclllator energy in case of equilibrium. For the 
harmonic oscillator wi th  N+- , one obtains y = 1 . For the harmonic 
oscillator wl th  a f lnite number of levels N , one obtains, however, values 
of 7 > 1. For almost al l  gases, however, the approximation of = 1 is 
valid for temperatures up to a few thousand degrees. Thus, the application 
of the pure exponential law within wide temperature l lml ts appears 
Justlf led, for tbe time belng. 

Boltzmann f X t W  exp( - W T )  , and 2, ;md Agvib Stand fW the Wf'fIlOSt 

Since the kinetic data for the kinetlc model of this paper are of great 
Importance, a closer examlnatlon w l l l  now be conducted as to how these 
data can be determined. 



2.3.1. QLExDerimental Results 

If the results of the vibrational relaxation measurements are present in 
the form of relaxation times, they then can be used to  calculate the 
corresponding reaction velocity constants. If the concentration of the 
collision partner is designated with [MI , then the effective velocity 
constant i s  obtained as 

The velocity constant of the exothermic reactlon results from it as 

(2.3.1 .- 1 ) 

From Equation (2.3.-4), one obtains for PI 
relaxation time 

as the function of the 

wi th  the Boltzmann factor 0 = exp( - €)/TI, so that the velocity constant 
of the exothermic reaction assumes the term 

(2.3.1 .-2) 

where PM stands for the partial pressure of the collision partner. 

Two methods for the measurement of VT-relaxation times have proven 
themselves as especially suitable: 

- the measurement of the absorption of sound waves 

- the measurement of the density S t rWWe in the relaxation zone 
behind gas-dynamic collisions. 

Both methods are described In &tall by Cottre// a d  McCoubfey 191. 
Sound absorption measurements make a very accurate determination of the 
vibrational relaxation times possible at a relatively modest investment. 

only within a temperature region of 250 K and 1000 K. From the 
For reasons related to application technology, this is, of course, possible E 



sequence of sound absorption above the sound frequency, one can determine 
the vibrational relaxation time. The remarkable aspect of this method of 
measurement is that the deviations from thermodynamic equilibrium is  
always small. The measurements in the collision tube, on the other hand, 
make translational temperatures from 300 K to  several IO000 K possible 
where substantial deviations from thermodynamic equilibrium can occur. 
From the density structure of the relaxation zone, one can determine the 
change of the inner energy of the gas. For most gases one can, without 
difficulty, calculate from this the share of vibrational energy, so that for 
each point of the relaxation zone one can determine a vibrational 
relaxation time. Measurements in C02 which were evaluated in this way, 
have shown that the distance from thermodynamic equilibrium exercises a 
significant influence upon the vibrational relaxation time (202 This is 
also shown by the theoretical investigations in Chapter 2.3.2. of this 
paper. When VT-relaxation time measurements in molecular gases with 
several vibrational degrees of freedom are made, the problem arises that 
one either has to assign the gained relaxation times to a certain degree of 
freedom, or one has to split the results wi th the help of a model in order 
to obtain the relaxation times of all vibrational degrees of freedom. Next, 
simple models are used here to  clarify the question, to what extent the 
particular VT-relaxation times of such molecules must differentiate 
themselves, so that they can be solved by SaMd absorption measurements 
or by density measurements In the collision tube. To this end it is 
assumed that within each vibrational degree of freedom there is  a 
Boltzmann distribution, and that the vibrational degrees of freedom don't 
influence one another by coup1 ings. Under those circumstances, one 
obtains the expression for the energy which is contained in the vibrational 
degrees of freedom, in terms of 

(2.3.1 .-3) 

Assuming that in the matter of sound waves in gases, one deals wi th 
adiabatic changes in state, one can describe the expansion of sound in 
accordance with CottreIJ McCoubrey [ 1 91 by 



a e - + P = o  , 
a t  p0 a t  

N 
e = 5 RT + evibi . 

i = 1  
2 

- 
a ev ib i  evibi - ev ib i  
- I  

a t  li 

An exponential expression of the type f = f*qe -i(a t - kX) for al l  

variables results in a linear equation system whose solution leads to  the 
complex velocity of sound 

where K is the complex adiabatic exponent which can be expressed by 

In this expression, s i b j  = bevibj / bT Is the heat capacity of the degree 
of freedom j at constant volume, = 2 w i s  the circular frequency of 
the sound wave, and T is  the VT-relaxation time of degree of freedom j. 
Thus, the following relationship is obtained for the velocity of sound as a 
function of frequency + 

cs = Reo 1 

and for the absorption coefficient, one obtains 



(2.3.1 .-4) 

The assumption is now made that the vibrational relaxation zone clearly 
contrasts from the pure gas-dynmic collision. Under this assumption, the 
vibrational relaxation zone can be described wi th  the help of the 
conservation equations for mass-, Impulse-, and energy flow at constant 
cross-sectional f low by 

The state immediately after the collision was characterized by the index 
"2*, and the state of thermodynamic equilibrium was characterized by the 
index "3". I f  the equation system is solved for the dimensionless density 
y = p/p2, then one obtains 

The two equations (2.3.1 .-4) and (2.3.1 .-5) are now applied t o  carbon- 
dioxide and water vapor. 

The COz-molecule exhibits the following vibrational forms: 

- Symmetrical valence oscillation with el  = 1920 K 
- doubly decayed bending oscillation wi th 62 = 960 K 

- atsymmetrical valence oscillation wi th  e3 = 3380 K 

At a temperature of 288 K and a pressure of 1 bar, the vibrational 
relaxation time of Cor! lasts about 6.13 psec. It i s  now assumed that this 
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is the relaxation time of the bending oscillation, and then the question 
arises which common relaxation time the other two degrees of freedom 
have to show, so that one obtains a second relative maximum at the 
measurement of the sound absorption. Fig. 2.3.1.- 1 shows that this is the 
case for the relaxation time relationships 

Similar relationships result from weak collisions. At  a temperature of 
500 K immediately after the gas-dynamic collision and an init ial presswe 
of 1 mbar, one should expect a vibrational relaxation time of 3.53 psec. 
One can see in Fig. 2.3.1.-3 that for the relaxation time relationships 

there is a step-wise density curve in the relaxation z m .  If the 
temperature of 1000 K is chosen for both experiments, then the proof of 
varying relaxation times for 

is successfully made. 

The H20-molecule exhibits the same vibrational forms as the 
C02-molecu le: 

- Symmetrical valence oscillation wi th  e l  = 5257 K 
- simple bending oscillation wi th  02 = 22% K 
- aPsymetrica1 valence oscillation wi th  e3 = 5406 K 

At a pressure of 1 mbar and a temperature of 288 K, the relaxation time 
is about 7.3 wsec. It is assumed again, that this i s  the relaxation time for 
the bending oscillation, and then the question arises how large the 
common relaxation time of the other two oscillation forms have t o  be, so 
that two absorption maxima can be observed. This question is quickly 
answered by remembering that, according to  equation (2.3.1.-3), the other 
two oscillation forms contain only 0.13%of the entire oscillation energy 
at a temperature of 288 IC This means that for the case at hand, one 
shouldn't expect a second absorption maximum, whatsoever. A t  the same 
temperature, the energy portion of the valence oscillations of the 

[text continued on page 24 1 19 
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Fig. 2.3.1 .- 1 

Sound absorption in CO2 relative to p = 1 bar. 
Curves designated wi th  the numeral ' I "  , refer to a temperature of 288 K. 
l a  : All degrees of freedom have the same relaxation time. 
Ib  : Both valence oscillations have a relaxation time which is greater by a 

factor of IO00 than that of the deformation oscillation. 

Curves designated wi th  the numeral '2" , refer to a temperature of 1000 K. 
2a : A l l  degrees of freedom have the Same relaxation time. 
2b : Both valence oscillations have a relaxation time which Is greater by a 

factor of 100 than that of the deformation oscillation. 
2c : The asymmetrlcal valence oscillation has a relaxation time which is  

greater by a factor of 100 than that of both other oscillation forms. 



Fig. 2.3.1 .-2 

Sound absorption in 
Curves designated with the numeral " 1" , refer to a temperature of 288 K 
la : All degrees of freedom have the Same relaxation time. 
1 b : Both valence oscillations have a relaxation time which is greater by a 

relative to p = 1 bar. 

factor of IO00 than that of the bending oscillation. 

Curves designated with the numeral "2" , refer to a temperature of 1000 K. 
2a : All degrees of freedom have the same relaxation time. 
2b : Both valence oscillations have a relaxation time which is greater by a 

factor of 1000 than that of the bending oscillation. 



1.4 I 

Fig. 2.3.1 .-3 

Density curves in the relaxation tone behind collisions in pure CO2 at an 
ini t ial  pressure of 1 mbar. 

The curves designated with the numeral "1' , refer to  a collision Mach 
number of Ma = 2.05 and lead to  a temperature of T = 500 IC 
l a  : Al l  degrees of freedom have the same relaxation time. 
1 b : Both valence oscillations have a relaxation time which is greater by a 

factor of 100 than that of the deformation oscillatbn. 

The curves designated wi th  the numeral "2* , refer to  a collision Mach 
number of Ma = 3.6 and lead to a temperature of T = 1000 K. 
2a : 
2b : 

2c : 

Al l  degrees of freedom have the Same relaxation time. 
Both valence oscillations have a relaxation time which is greater by a 
factor of 100 than that of the deformation oscillation. 
The asymmetrical valence oscillation has a relaxation time which is 
greater by a factor of 100 than that of the deformation oscillation. 



Fig. 2.3.1 .-4 

Density curves in the relaxation zone behlnd collisions in pure H20 at an 
init ial  pressure of 1 mbar. 

The curves designated with the numeral "1" , refer to  a collision Mach 
number of Ma = 2.1 and lead to  a temperature of T = 500 K 
1 a : A l l  degrees of freedom have the same relaxation time. 
1 b : Both valence oscillations have a relaxation time which is greater by a 

factor of 100 than that of the deformation oscillation. 

The curves designated with the numeral "2' , refer to a collision Mach 
number of Ma = 3.5 and lead to  a temperature of T = lo00 IC 
2a : A l l  degrees of freedom have the same relaxation time. 
2% : Both valence oscillations have a relaxation time which is greater by a 

factor of 100 than that of the deformation oscillation. 



C02-mo1ecule was still 3.4%. in spite of the doubly decayed bending 
oscillation. The same thought can also find application for the relaxation 
zones after weak collisions; it also leads to the result that at low 
temperatures, a separate actuation of each particular degree of freedom 
can definitely not be observed with such experiments. Fig. 2.3.1 .-2 and 
2.3.1 .-4 show that, at temperatures of about 1 OOO K, a solution for the 
degrees of freedom for both measuring methods becomes possible i f  

From these investigations, one may conclude that the same relaxation time 
can not be assumed for al l  vibrational degrees of freedom of a molecule 
whenever the sound absorption measurements give only a relative 
maximum and whenever the collision tube experiments give no indication 
about a stepwise density curve in the relaxation zone. On the other hand, 
one can expect from spectroscopic measuring methods that a solution of 
the relaxation time for each particular vibrational degree of freedom is 
possible. Such investigations are difficult, however, because many of the 
necessary rotational oscillation transitions are of weak intensity, or they 
cannot be clearly identified due to overlaps. Bethe and Te//er [ I ]  do 
assume, however, that wi th molecules having several vibrational degrees 
of freedom, those vibrational forms are actuated fastest, which show the 
lowest characteristic vibrational temperatures. There also seem to be 
cases in which the vibrational forms with higher characteristic 
vibrational temperatures #.e preferably actuated. This was, for example, 
observed by @a//; et a///’ (211 for the asymmetrical valence mode of 
C02 wi th N2 as collision partner. 

There are now numerous experimental results available for the relaxation 
time of the vibratlonal degrees of freedom of many gases. Often, error 
quotes are given lor various experiments which Ife far below the scatter 
of the experiments among one another. In the mean, the experiments 
scatter by a factor of two, where the deviations increase with an increase 
in the gas temperature. The details In Chapter 2.3. have shown that this 
cannot have anything to do with the actual Ilmited number of energy levels 
for each vibrational degree of freedom. Based on this constderation, one 
can also exclude the inf luence of anharmonicities, because these begln to 
come into play only when very high energy levels are so tightly occupied 



that they make a significant contribution to the vibrational energy of the 
respective degree of freedom. Consequently, it is easy to suspect that one 
deals wi th  effects which can be traced to a dependence of the relaxation 
time upon the vibrational state or upon the deviation from the thenno- 
dynamic equilibrium. In the following chapter, it w i l l  be shown that both 
are valid. 

2.3.2. T h e o r v o n  of 

For the theoretical calculation of kinetic data, it is necessary to 
determine the transition probability that corresponds to the vibrational 
excitation. I f  p is the transition probability for a single collision at a 
relative velocity g , then the median transition probability P is obtained 
by integration across the velocity distribution. When the transition 
probability P is multiplied by the number 2 of the total gas-kinetic 
collisions, then the number of collisions is obtained that lead to a 
vibrational excitation in the medium. I f  P is known, then the 
corresponding relaxation times can be calculated according to  Equation 
(2.3. I.-41, and the cmspomling reaction velocity constants according to 
Equation (2,3.1.- 1 1 OT (2.3.1 .-21. 

Almost all theoretical calculations of the transition probability are based 
on guantm-mec;trwrical expressions. With these methods of solution, the 
functions are substituted into the stationary or instationary Schriidinger 
equations, which are to describe the potential f ield in which the collision 
partners interact with one another. The transition probability p can be 
determined wi th  the help of the exact or nearly-exact solutions for the 
Schrodinger equation. Closed solutions, however, exist only for certain, 
simple potential functions whichoften don’t describe the real 
relationshlps very accurately. Obviously, the result of such calculations 
is, moreover, very dependent upon the fonn of the applied potential field. 
Nevertheless, it is possible to examine the solution circumstances in 
principle without committing to any particular potential field. The 
necessary quantum-mechanical calculations for this were carried out by 
Daring [2]. They are limited, however, to the harmonic oscillator with 
one degree of freedom. For the transition probability, one obtains on the 
basis of these calculations 



The upper summation l imi t  1 i s  given by the smaller of the two values n 
and m which have the significance of vibrational quantum numbers. The 
quantity G wi l l  be designated as the interference function in the 
following description. It is obtained by a Fourier-transformation of force 
F(t) which acts upon the oscillator whenever a collision occurs. In the 
following observations, the collisions are treated as nearly elastic. 
Consequently, the movement of particles during the collision becomes 
symmetrical wi th  respect to the reversal point. Thus, the interference 
function now becomes 

which, by virtue of symmetry, is twned into a purely imaginary quantity. 
The conjugate-complex value G* of the interference function is now 
equal to the negative value of the interference function itself. In this 
way, the transition probability Is given by 

In most cases, the results in the region of the most frequent relative 
velocity of a Maxwell-velocity distribution are 

and the relationship for the transition probability can be simplified, so 
that the result is 

The collisions which occur at higher relative velocities, do not result in 
IGl a 1 , but they are less frequent so that, in general, there is no large 



error wi th respect t o  the median transition probability Pm + n at 
temperatures below about 1000 K As can be seen from Equation (2.3.2.-2) 
the transition probability is  largest for collisions, in which the 
vibrational quantum number changes by 1 . 

An estimate w i l l  now be made, how the median transition probability 
Pm+n depends upon the kinetic gas temperature. For this, the 
interference function G wi l l  f i rst be determined. 

As the potential field, a pure repulsive potential in the form of 

is  enlisted. In it,a stands for the stiffness of the potential and y stands 
for the vibration coordinate. The potential stiffness moves, for most 
gases, in a region of 2 A-1 <d < 5 A! The vibration coordinate y can 
generally be neglected, compared to the action radius r , especially since 
A < I .  TWS, the equation of motion of a central elastic collision 

is obtained. fl stands for the reduced colllslon mass. Wlth the l imiting 
condltlons 9( I tb- )  = go and r( Itl-+- = QO, one obtains the solution 

W i t h  it, the relationship for the interference function is obtained as 

n o  
0 

The expression n Go/ d% is, up to a numerical factor of the magnitude 1 , 
equal to the quotient of the collision time and the duration of the 
oscillator's vibration. Therefore, the expression nuo/d go s 1 is  valid 
lor  many appllcations, and by introducing of the approximation 



one can simplify the interference function, so that the relationship 

is obtained. The portion of collisions which occurs at a relative velocity 
between g and g + dg, is 

Thus, one obtains for the median transition probability 

and, along with Equation (2.3.2.-2), one finally winds up with 

This integral c a m  solved in its closed form. The exponentldl function 
possesses, however, a sharp maximum at location 

with the result for the temperature tendency being 

By neglecting a factor $-T in relation to  the factor of the temperature- 
dependent exponential function, one obtains for the temperature tendency 



of the relaxation time 

This result was found using a different approach, back in 1936 by Landau 
and Te//ef (31, and was conf inned by numerous tests in a wide range of 
temperatures. The interference function could be simplified under the 
assumption that the vibration time of the oscillator is low compared to 
the collision time. The obtained temperature dependence of the relaxation 
time is also tied to this prerequisite. I f  the collision time is  low 
compared to the vibration time, then the simplif ication 

can be introduced which leads to the median transition probability 

The temperature tendency for the relaxation time, in this case, then 
becomes 

The stiffer the potential f ield and the smaller the oscillator freguency, 
the smaller the ratio between collision time and vibration time. The 
greatest effect, however, should be ascribed to the temperature. At an 
increasing temperature, the median relative velocity rises so that the 
collisions wi th  ~coll/t,o a 1 gain in importance and that the 
temperature dependence of the relaxation time comes closer and closer to 
the pure root law. Under these circumstances, la a 1 is no longer valid. 
One must, therefore, examine what the effects are when consideration is 
given for the members of higher order in Equation (2.3.2.- I ) .  The premise 
is kept that the collisions proceed in an almost elastic way. With these 
asumptions one obtains from Equation (2.3.2.- I ) this relationship: 



If the value of the interference function G does not grow beyond 0.4, then 
the number of the exponential function is always close to 1 . Then one 
obtains as the approximation of the second order 

Averaged across the velocity distribution, one obtains 

where the I irst order approximation is 

The defining equations for the factors y and 9 are then 

For the chronological change of distribution densities, one thus obtains the 
relationship corresponding to  Equation (2.3.- I )  

30 



For the chronological change of the vibrational energy, one obtains 

d x  (D 

evib 
d t  
- = R.8. ( n + $ )  -2 d t  

n 4  

after calculation of the sum and rearrangement of the members 

Here again, 4 stands for the Boltzmann factor exp ( -BIT). Under the 
asswnptlon that there is  always a Boltzmann distribution, the distribution 
densities are given by the relationship 

In It, 
momentary vibration temperature. One thus obtains, after once more 
adding and rearranging the various members, the chronological change of 
the vibrational energy 

stands for the Boltzmann factor exp ( -O/Tv), where Tv is  the 

Finally, i f  for 4N-4) the dimensionless equilibrium energy evrb/RB is 
substituted, and 1lkewIse the dlmenslonless momentary energy for 

-4v)J 3i 



then one obtains 

Thus the precise result for the vibrational relaxation time in the 
approximation of the second order is the relationship 

while the result of the first approximation is  

According to Equation (2.3.2.-3), the vibrational rehxation time depends 
not only on the gas temperature, but also on the momentary state of 
osclllatlon. With this condition, one can explain the temperature- 
increase-related, rising width of scatter of the experimental results. An 
especially large deviation must, therefore, be suspected between 
experimental results which were obtained wi th  the coil ision tube- and 
sound absorption methods, because wi th  the sound absorption method, the 
deviations from the equilibrium are weak, but wi th  the collision tube 
method, the deviations can be very large. This effect can be easily proven 
from literature. The available results of both measuring methods cross in 
a temperature region of about 500 K to IO00 K . With the aid of Equation 
(2.3.2.-3), one can now determine the quotient of the actual momentary 
relaxation time and the relaxation t imey for minor deviations from 
equilibrium at equal gas temperature. One obtains 

Here, E is the oscillation energy, standardized wi th  RB . For most 
gases, one obtains ‘f > 3~ in the valid region of this approximation. In 
this case, t /<< 1 is always valid, independent of and E . 

32 



The exchange of energy between translational- and vibrational degrees of 
freedom takes place so much more rapidly, the farther the system is  away 
from equilibrium. This was also observed by Hur/e 141 in expansional 
flow of nitrogen, and by Johameseen, e t  a///’ [SI in the relaxat ion zone 
after gas-dynamic collisions in C02-gas at collision Mach numbers 
between 1.4 and 4. For large values of the interference function G, the 
approximation of the second order also loses i ts validity. Equation 
(2.3.2.-3) can then no longer be applied, since the integration of the 
transition probability across the Maxwell distribution takes place, to a 
large extent, in velocity regions where the quantity of the interference 
function G exceeds the value of 0.4. This happens when the gas 
temperature exceeds a certain value which, for example, for the 
deformation oscillation of C02 comes to about 700 K. Beyond this limit, 
one would have to take terms of a higher order into account which would 
necessitate an effort that would no longer justify an analytical solution. 
For IGl> 0.4 , the transition probabillty does not, however, climb 
monotonously, but i t  shows a resonance structure as presented in Fig. 
2.3.2.- 1 for the bendhg oscillation of the C02-molecule. 

Fig. 2.3.2.- 1 
Graph of the transition probability for the deformation oscillation of C02 
over the relative velocity. 
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Fig. 2.3.2.-2 
Graph of the median transition probability for the deformation oscillation 
of C02 over the gas temperature. 

As can be seen from Fig. 2.3.2.-2, one does not obtain any more 

for the median transition probability at high temperatures but rather, in 
approximat ion 

‘n+l ,n 

This opens the possibility for the e 

= p l , o  

:amination of the dependence of the 
relaxation ttme on the gas temperature and on the oscillation state, even 
at  higher temperatures. In order to remain general, the following w i l l  
have to  be understood in terms of temperatures which are several times 
the characteristic oscillating temperature. From Equation 2.3.- 1, one 
obtains the realtionship 



* 'n + 4 * 'n- I] * ' (2.3.2.-4) 'n - d t  = 2 .Pl,o.[xn+l - ( 1  + $ I  

After multiplication by level energy evib(n) = R e  W n  + 1/21 and adding 
across n from 0 to -,oneobtains 

The differential quotient disappears for xo = 1 - 4 ,  which is a sufficient 
enough condition for applying the Boltzmann distrlbutlon. By employing 
the Boltmann distrlbutlon Xn = ( 1  - y1* yn in Equation (2.32-41, one 
obtains 

In the state of equilibrium, the l e f t  side of the equation disappears since 
= 0 , and one obtains, with the aid of the right side of the equation, the 

only physically meaningful solution y = $. This means that at the 
beginning and toward the end of the change in state, there is a Boltzmann 
dlstribution. During the change in state, there can be no Boltzmann 
distribution, because the left  side of the equation has the oscillation 
quantum number n , and the term in the large bracket does not disappear. 
From the foregoing considerations, the relaxation times can now be given 
at the beginning and at the end of the relaxation zone without the 
necessity for solving the differential equation for distribution density. 
For the beginning of the relaxation there is with 

the relationship 
1 

and toward the end of the relaxation wi th 3 5  



'vib - e v i b  1 im 
TVib(") = evib+Fvib 

ev ib  . . _  
d t  

the relationship 

9 stands for the Boltzmann factor at the geginning of the relaxation and 
$ stands for the Boltzmann factor which is formed with the gas 
temperature. At an equal gas temperature, the following relationship 
results for the quotient o f t  vib(0) and 1: vib (4 : 

I f  one uses the corresponding vibratlonal energies in place of the 
Boltzmann factors, then the result for the relaxation time at the beginning 
of the process is 

evi b ( 0 )  
1 RO 

'vib") z , p l  . ( I  - $ )  ' 7, (2.3.2.-5) +- no R O  

and for the relaxation time quotient, it 1s 

where E stands for the dimensionless oscillation energy evib/Re. In 
contrast to  Equation (2.3.2~31, there are always varying results for 
compressional and expansional flow wi th  Equation (2.3.2.-5). According to 
Equation (2.3.2.-5) there is always, at high temperatures after 
compressional collisions, a relaxation time which is smaller than the 
relaxation time at a slight deviation from the equilibrium. For expansional 
f low there is, however, always an increase in the relaxation time. 
Experiments in the collision tube have confirmed this behavior (201. 3 6  
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Fig. 2.3.2.-3 
Graph of the relaxation time after a collision in pure C02 at a collision 
Mach number of Ma = 5.01, an initial pressure of 0.3 mbar, and an ini t ial  
temperature of 293 K . 
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In Fig. 2.3.2.-3, one can see a typical graph of the relaxation time across 
the relaxation zone for the bending oscillation of the C02-molecule. A t  
the beginning of the relaxation, the relaxation time is  sti l l  definitely 
smaller, as expected from earlier results. Toward the end of the 
relaxation, on the other hand, relaxation times are measured which show 
good agreement with eartier results. Accordlng to Equation (2.3.231, the 
deviations of the relaxatlon time from the relaxation time at  slight 
interferences are the larger, the smaller the characteristic oscillation 
temperature of the corresponding degree of freedom is. This appears to 
explain why the relaxation time measurements in C02 show an increasing 
scatter wi th  an increase in the gas temperature. Because of the relatively 
low characteristic temperature of the bending oscillation of 960 K , one 
must expect deviations in the relaxation time at slight interferences 
which can reach one order of magnitude or more. There is  only l i t t l e  
known from published literature, where the changes in the relaxation time 
on account of the decrease in gas temperature in the relaxation zone are 
considered. Many measurements, therefore, deal wi th a median value for 
the entire relaxation zone. 
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It, therefore, always appears advisable when using experimental results in 
kinetic models, to take possible errors of up to one order of magnitude 
into account for the relaxation times. At temperatures of up to 1000 K , 
experience has shown that the experimental results scatter by a factor of 
two. 

2.4. m r f e r m  of the R o l m  D i s t r m  

With the help of Equation (2.3.- 11, one can describe the change in the 
distribution density of the various energy levels of a vibrational degree of 
freedom as a result of VT-collisions. Now, an examination w i l l  be 
conducted into how the transition between two states 0 and 1 takes 
place, when the distribution densities of both states can be described by 
Boltzmann distributions which correspond to the kinetic gas temperatures 
To and TI. From Equation (2.3.41 to (2.3.-3), one obtains, with the 
abbreviation yi = exp(-8/Ti), this relationship 

Based on the assumption, that the solution is a Boltzmann distribution 
function which corresponds to a temperature T between To and T 1  , 
therefore, the equation 

x & t )  * (1 - Y )  * y n  

is set up with y = y(t). 8y insertion into the equation system, one obtains 
for y the differential equation 

This equation is  now independent of n.  It means that during the entire 
change in state, there is a Boltzmann distribution. Under consideration of 
the limiting conditions 

y ( t . 0 )  = Yo I 

y ( t + - )  = Y 1  

3 8  



the solution of the differential equation becomes 

The effect of an additional excitation from VV-collisions w i l l  now be 
examined. Let the test gas consist of a mixture of two gases, wi th  one 
effective vibrational degree of freedom for each gas. The changes in the 
distribution densities on account o f  VT-collisions are then given by 

and 

yn now stands for the distribution density of the admixed gas, and the 
Boltzmann factors are given by ti(Tj). The designations A and B stand 
for the mole fractions of the two gases in the mixture. The reaction 
velocity constants are described by and Bi where i stands for the 
collision partner. In addition, the It' level of the oscillator x and the 
mth level of the oscillator y are to exercise an influence against each 
atbm: In attt)fttan t o  thc: tharrgts in distribution densities on account of 
VT-collisions, a distrfbutlon density change,therefore, takes place which 
becomes for the oscillator x 

I 

Here,$ Is the the reaction velocity constant for this process, An 
expression for the solution 

n x, (1 -4 )o  - 4 x  
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and 

now only yields for n * 1 or for n m a differential equation for ox or 
6, independent of n. For n = 1, one obtains for the oscillator x the 

follow Ing expression 

For this reason, one cannot get only one valid solution for each n , neither 
for ox nor for ty. This means that the Boltzmann distribution receives 
interference from the VV-collisions. 

A closed solution of the differential equation system is not possible, and 
the extent of the interference can, therefore, not be determined without 
numerical methods. It is possible, however, to estimate when an 
interference from VV-collisions Is substantial. Such is the case when the 
delivered energy cannot spread fast enough across al l  energy levels. Thus 
one obtains as the criterion for noticeable interferences 

The lowest energy levels are the easiest to  disturb because they have the 
greatest density. The case most advantageous for an interference, is 
1 = m = 1 . Thus the criterion now becomes much simpler 

If a Boltzmann distribution prevails up to the noticeable introduction of 
the interference, then one obtains 
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An Interference can take place only when ty - tx 
only happen when the oscillator y is  already substantially excited and, 
therefore, the expression 

0.  Thls, in turn, can 

must be valid. Here again, the most advantageous case for an interference 
is tX e 4,  so that one obtains 

Based on Equation (2.4.- 1 ), one must expect that tx is very small against 
fx(T 1 ) and against 1. A large denominator is also advantageous for the 
interference. The denominator for 4 = 1/2 becomes maximal so that one 
eventually obtains, as a (rough) estimate, the following expression 

(2.4. -2) 

Based on Equation (2.4.- 1 1, one must again expect that tx(T i s  relatively 
large. The Boltzmann factor j,(Tl) cannot, however, exceed the numerical 
Value of 1. As criterion, the following expression remains along with 
Equation (2.4.- 1) 

This condition, in no way, poses any unusual demands. In many cases, the 
reaction velocity constant of VV-reactions is higher than the constants of 
the also participating VT-reactions. There are, however, only very few 
cases where the validity of the Equation (2.4.- 1)  i s  ensured. An accurate 
explanation for the extent of interferences can only be given by numerical 
calculation. One can, however, suspect a noticeable interference when 
condltlons (2.4.- 1)  and (2.4.-3) are slmultaneously rulfllled. 41 



3. BpplicaUon of the Model on CQ 2 A0-N-O 2 2-HeM\xtur= 2 

In Chapter 2 ,  the kinetic equations for the energy exchange in molecular 
gas mixtures were formulated in general terms so that an application for 
any given gas mixture is  possible. Theory requires that for al l  gases of 
the mixture, the same number M of energy levels per vibrational degree of 
freedom be considered. Therefore, the number M orients itself in 
accordance with the highest necessary vibrational degrees of freedom. M 
can then be found with the help of the requirement that the energy content 
of the respective degree of freedom, up to a certain error, is  equal to the 
same gas consisting of harmonic oscillators wi th  M energy levels. This 
energy content is obtained by summation across al l  energy levels M as 

I f  the distribution densities can be described by a Boltzmann distribution, 
then one obtains 

After calculating the summation and after rearranging various expressions 
one obtains for the absolute vibrational energy 

The finite number M of energy levels 
absorption to  

l i m  e 
- T + m  v i b  e .  

V’bmax 

imits the maximum energy 

The vibrational energy stored in the molecule cannot exceed the 
dissociation energy D since, otherwise, the molecule falls apart. I f  one 
defines a characteristic dissociation temperature e,-, = D/k, where k i s  
the Boltzmann constant, then with the characteristic vibrations O j  , the 44 



following requirement i s  given by 

J 

(3.- 1 )  

Here, J stands for the number of vibrational degrees of freedom of the 
respective gas. For such a gas, the portion of molecules in the vibrational 
ground state amounts to  

I-' . xo,o,...,o = [? e x p ( - x n i o i / T )  

J 

ln l=o n 2 J  =o n =o i = l  J 

The summation l imi ts Ni must always be chosen in such a way that 
Equation (3.- 1)  is satisfied. All of the stored vibrational energy in the gas 
is thus obtained with 

n -0 n =o n -0 j = l  
1 2 5  i-1 

Here again, the summation l imits must be chosen so that Equation (3.- 1 )  is 
valid, For molecules wi th only one vibrational degree of freedom, these 
calculations are simple. For three-atom molecules, however, there are 
already, in general, three vibrational degrees of freedom, w i th  
abnormalities not included. An n-fold abnormal degree of freedom must 
be treated like n normal degrees of freedom so that, for example, C02 has 
J = 4 degrees of freedom. In addition, one has to  pay attention to the fact 
that wi th abnormal vibrational degrees of freedom, not al l  combinations of 
quantum numbers are possible. The selection rules for C02 are listed in 
Chapter 3.3. Calculations of the vibrational energy can then be carried out 
only wi th  the help of simpified assumptions or in a numerical way. A 
possible simplification consists in the assumption that within the 
molecules, a continuous exchange of energy takes place which means that 
each degree of freedom can take up the same maximum energy content. For 
the various degrees of freedom one, therefore, obtains the number of 
energy levels to be considered as 



Fig. 3.- 1 to 3.-3 show the vibrational energy content of C02, calculated 
in three different ways: 

- Harmonic oscillator wi th indefinitely many energy levels. 
- Harmonic oscillator wi th total energy limitation for a l l  degrees of 

- Harmonic oscillator wi th energy limitation for the individual 
freedom. 

degrees of freedom 

Fig. 3 . 4  

Plot of vibrational energy of the symmetrical valence oscillation for C02 
versus the vibrational temperature. 
1 : Harmonic oscillator wi th indefinitely many energy levels. 
2 : Harmonic oscillator wi th limitation of total energy. 
3 : Harmonic oscillator wi th limitation of energy for each vibrational 

degree of freedom. 



Fig. 3.-2 

Plot of vibrational energy of the deformation osci lation for C02 versus 
the vibrational temperature. 
1 : Harmonic oscillator wi th indefinitely many e lergy levels. 
2 : Harmonic oscillator wi th limitation of total energy. 
3 : Harmonic oscillator wi th limitation of energy for each vibrational 

degree of freedom. 

Fig. 3.-3 

Plot  of vibrational energy of the asymmetrical valence oscillation for C02 

versus the vibrational temperature. 
1 : Harmonic oscillator wi th indefinitely many energy levels. 
2 : Harmonic oscillator wfth limitation of total energy. 
3 : Harmonic oscillator wi th limitation of energy for each vibrational 

degree of f reedom. 4 5  



The question is now about the number of energy levels Mj which, when 
the simplified model is used, shows a lowest possible deviation compared 
to  the model with total energy limitation. One finds for C02 at 
temperatures of under 10000 K 

for the bending oscillation M 2 = 3 5 ,  
for the symmetrical valence oscillation M i  = 18, 

for the asymmetrical valence oscillation MJ= 10. 

Thus, there are at least 36 energy levels up for consideration in a kinetic 
model which contains C02. For the system C02 - H F  - N2 - O2 - He at 
gas temperatures of under 10000 K, the conditions are given in Table 3.- 1. 
For H F ,  only the bending oscillation was taken into account because the 
other two vibrational forms show very high characterlstic temperatures. 
The consequence Is that the predominant portion of the HF-molecules 
find themselves in the ground state of these vibrational forms. 

Table 3.- 1 

Number of energy levels t o  be considered. 

The calculation of the reaction kinetics is done numerically. Due to the 
magnitude of the system, this can only be accomplished with the help of a 
computer. Programming of the general formulae which were developed in 
Chapter 2, is not always advantageous. The three-dimensional reaction 
matrices AVV and AV , for example, contain by necessity numerous zero 
elements. Also, when there are substantially differing values for the 
number MJ of energy levels of the degree of freedom j , then these 
general formulae don’t necessarily offer an advantage. But this is not 
valid anymore when computers are available which can work more 
effectively at total vectorialization. The special formulation was 
preferred, however, since there was no vector computer available when 
the calculations for this paper were made. Therefore, only that number of 
energy levels listed in Table 3.- 1 for each vibrational degree of freedom, 
was taken Into account. 
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The pertinent reactions were chosen, based on the tables by Taylor, 
Bitterman id]. In the following scheme, the respective collision partner 
carries the designation M : 

lecular). M = C02, H F ,  N2, 02, He 

C0,(3)(v2) 4 M 4 416 cm" + CO,(')(v,) + M 

C0,(2)(v2) + M 4 102 cm-l =z CO,(')(v,) t M 

The last reaction is  of special significance. It deals with the most 
important Fermi resonance reaction of the C02-molecule. One of the 
fastest and, therefore, also one of the most important reactions is  the 
vibrational energy exchange between C02 (Q3) and N2 Higher-excited 4 7  



N2-molecules can participate in this process, according to Kleen, Mueller 
[ 181. This  applies mainly to all VV-reactions, but in this special case, a 
disturbance of the Boltzmann distribution is to be expected because of the 
high reaction velocity. Therefore, all nitrogen levels were included in both 
reactions which pertain to this energy exchange. Thus, the system at hand 
consists of 157 dependent variables which are designated as follows: 

Y(  4 )  

y( 22) 

Y( 23) 

[ C O , ( j ) ( W 2 ) ]  

[co, ( J ) ( v 2  13 

[C0,(J)(v3)] 

Y(  58) 

Y(  59) 

Y( 69) 

Path of particles 



The reactions are counted as follows: 

1 -  18: 

19 - 53 : 

54 - 63 : 

64 - 88 : 

89 - 121 : 
122 - 147 : 
148 - 180 : 
181 - 213 : 

214 : 

215 : 

216 : 

217 : 

218 : 

219 : 

The heat effects of the individual reactions can be calculated from the 
intermediate wave numbers 3 according to 

A c  = N,, - h C * i T  = 11,964 - j J / m o l  

In this equation, 3 must have the unit cm- '. 



For the individual reactions one obtains, therefore: 

1 - 18 : 16 606 J/mol 
19 - 53 : 7 980 J/mol 
54 - 63 : 28 103 J / m l  
64 - 88 : 19 083 J / m l  
89 - 121 : 27 888 J / m l  

122 - 147 : 18 616 J / m l  
148 - 180 : 215 J/mol 
181 - 213 : 78 J / m l  

214 : 3 230 J/nol 
215 : 9 272 3/mol 
216 : 8 806 J / m l  
211 : 467 J/mol 
215 : 4 977 J / m l  
219 : 1 220 J/mol 

The system has six different vibrational degrees of freedom with the 
following characteristic temperatures: 

CO,(vl) 1998 K 

(k21 960 K 

(y3) 3381 K 

H,O(vZ) 2296 K 

N2 3355 K 

0, 2240 K 

From the motion equations in Chapter 2.2. , one obtains 



Q stands for the energy per volume, brought in from the outside. Such an 
energy supply is possible, for example, by the swelling, the sinking, or the 
action of a high-frequency excitation. According to  Equation (2.2.- 1 1, Q is 
the momentary flow velocity, and Index 2 designates the init ial  state. 
From Chapter 2.1. it follows for a l l  components that 

The second term on the right side takes the conversions in the individual 
reactions into account. The f i rst  term on the right side, on the other hand, 
stands for the concentration changes caused by state changes. The 
quotient $p w i l l  be abbreviated with a 6 in the following examination. 
Thus one obtains the following differential equations fo r  each of the 

j = 6,7,.. . ,21 

- D E  9 

' D21 - D22 D218 4( 2 6 )  = B my( 26) 

?( j = B * Y (  j + Dj-5 -Dj-4 ; j = 27.28 ,... ,57 

p( 58) = B * y (  58) + D 5 3  



1 8 0  I 1 3  

60) = B - y( 60) - DS4 - 055 + 1 Di + Di + DZl8 
1 b I  111 

2 1 3  

i( 61) = B * y (  61) +DS5 -056 -  Di 
1 0 1  



For the conversion rates of each of the individual reactions one obtains: 

i = 19 c 53 
j = i - 1 8  

1 = 54 4 63 
j - 1 - 5 3  

1 = 64 + 88 
j = i - 6 3  

i = 89 * 121 
j . 1 - 8 8  

1 = 122 c 147 

j = i - 121 

i = 148 c 180 
j = i - 147 

53 



denotes the momentary concentration of gas type M . The indexing of 
the reaction velocity constant k 

-9f .  
at k ,  k 

at ka-b 
and 

refers to the direction of the reaction, 

refers to the participating degrees of 
freedom. 

The degrees of freedom are designated with the abbreviations 

CI for CO2W1),  

c2 ror co2 w2), 
C3 for CO2 W3) , 
H2 for H F  N2) , 
N for N2, 

0 for 02. 

The indexing of the reaction velocity constants a t  kj-m refers to the 
participating end level j at VT-reactions and the collision partner M 



who evolves unchanged from the reaction involving VT-reactions. An 
exception is made by the reactions of the VV-interaction between C3 and 
N. There 

klC3-N designates the reaction wi th the heat effect 18 cm-', and 

k2C3-N designates the reaction wi th the heat effect 7 cm-l . 

With respect to the electrical excitation of the vibrational degrees of 
freedom, the reader is referred t o  Chapter 3.2. and Appendix 8. 

The solution of the described system of differential equations is 
performed numerically wi th the help of the Runge-Kutta Method. A control 
for the interval was built into the computer program, so that the relative 
accuracy wi th which each time interval is calculated, always remains 
within the l imits (IO-' , 10-7Z Numerical difficulties occurred only at 
those locations where the electrical excitation of the vibrational degrees 
of freedom ceased, or where the effect of radiation fields begins or ends. 
There, the interval control can fail when these locations are situated 
between two time intervals. The interval control then swings back and 
forth between decrease and increase of the interval. This deficiency could 
be remedied in that the interval control at these locations was blocked 
whenever necessary, enabling the calculation past these locations by using 
the smaller interval. Thereafter, the blockage was l i f ted again. In this 
way, a satisfactory calculation accuracy is always assured. 

3.2. Overview Over 

In Chapter 2.3.1 ., it was demonstrated how one can produce reaction 
velocity constants for the individual energy exchange reactions when the 
relaxation time or the median transition probability is given. For 
VT-reactions, one would, therefore, expect a temperature dependence in 
the form of 

Experience shows, however, that in this form there is no satisfactory f i t  
to the experimental results. For VT-reactions, therefore, Blauer, 
Nickerson [7] propose the form 
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It i s  evident that wi th this expression a satisfactory fit to al l  
experimental results for VT-reactions is possible. The coefficients A, B, 
and C, proposed by Blauer, Nickerson were not used, however, because they 
were developed mainly with the aid of purely theoretical data by Herzfeld 
[ 171, and these data do not show good agreement wi th more up-to-date 
measurements. Instead, those coefficients were used which had been 
developed with the help o f  an interactive, graphical computer program by 
means o f  the fit of Equation (3.2.-2.) to  experimental results. These 
coefficients are listed in  Appendix A. For some VT-reactions there are 
only very few experimental results available; or only those experimental 
results are available for some of the possible collision partners with 
respect t o  the model at hand. In these cases it was possible apply the 
systematic approach by Millikan, White [81. They give as the general 
formula for the relaxation time of VT-reactions 

where p stands for the reduced collision mass and 8 for the 
characteristic vibrational temperature of the excited collision partner. 
This theory was tested by my own investigations where i t  was determined 
that the constant wi th the value of 18.42 wasn't valid for al l  reactions. 
One can l i s t  for each reaction i t s  own constant so that the differing 
results for various collisions partners can be reproduced with sufficient 
accuracy by Equation (3.23). This method was also applied to  the 
velocity constants for the Fermi-resonance. For this reaction, only very 
few experimental results are available; but they fit very well into the 
systematic approach. Equation (3.29)  can be reduced to the general form 

From it, we obtain for the reaction velocity constant in accordance with 
Equation (3.2.-2) 



I 
[ 1 - exp(- O I T )  1 -  Ini; = A + I ~  

The coefficients for the VT- and the V-reactions which were developed 
with the help of the systematic approach by Millikan, White 181, are also 
listed in the appendix. In the remaining cases, where there were neither 
experimental results available nor help from the systematic approach by 
Millikan, White (81, the velocity constants were determined with the aid of 
theoretical calculations. Using known experimental data, some of the 
familiar theories from literature were checked for their suitability. 
These were the Schw artz -S 1 aw sky -Her2 f e 1 d Theory 1231, and the theories 
by Herzfeld, Litovitz 1221, Nikitin [24], and Widom [14]. The best 
reproduction of the experimental results was achieved with the theory of 
Widom [ 141. The velocity constants, determined wi th  this theory, were 
subjected to the same procedure as the experimental results and produced 
in the form of Equation (3.2.-1). Coefficients A, B, and C, thus developed, 
are also listed in the appendix. The temperature dependence of the 
reaction velocity constants for VV-reactions varies widely. According to 
Taylor, Bitterman [6], one generally obtains 

where the temperature dependence of the transition probability P can 
show differing tendencies. Generally, however, one can expect that the 
median transition probability with VV-reactions depends less upon the gas 
temperature than is the case with VT-reactions. For VV-reactions in this 
paper, the expression 

is  given. The experimental results can be satisfactorily described with 
the aid of Equation (3.2.-3). Coefficients A, B, and C which were also 
determined by using a graphical match process, are listed in Appendix A, 
just l ike the other constants for the VT-reactions. The V-reaction 
between the vibrational states C02(3)(32) and CO2( ' )(33) was treated in 
the same way as the VT-reactions. The reaction velocity constants of the 
VT-reactions stand for the reactions between the vibrational ground state 
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and the f i rst  exgited vibrational state. With the help of Equation (2.3.-2) 
and because of k - P (median transition probability) one can calculate al l  
other reaction velocity constants. 

. .  3.3. -1 S i a n a l l i f i c a t i o n  

In a formal way, small signal amplification i s  nothing else than the 
negative absorption coefficient: if a radiation field i s  superimposed over 
a flowing gas mixture, and i f  the absorption coefficient for this radiation 
field becomes negative because of an inversion, then the radiation f ield i s  
intensified by the passing of the gas. A prerequisite for the observation of 
the small signal amplification is  that the radiation f ield i s  sufficiently 
weak so that the population densities of the participating energy levels 
are not significantly changed, and that no significant amount of energy i s  
pulled away from the gas mixture by radiation. The small signal 
amplification is  an important quantity which permits an evaluation of 
maximum laser efficiency which can be withdrawn from the gas mixture. 
The small signal amplification is  given by 

stands for the wave length of the radiation transition j+k, ajk 
stands for the spectral probability of spontaneous emission, and f(J,Vjk) 
stands for the line form function. Quantities nj,k and gj,k stand for the 
population density and the weights of the upper and lower laser levels. 

j k  

The line form function is  subject to three influences: 

- Natural line width which is created by the statistical distribution 
of the optical transition probability. The natural line width does 
not depend on pressure and temperature. 

- Doppler broadening which is  created by the presence of a 
molecular velocity spectrum. The Doppler broadening of a line is  
proportional to SQ. 
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- Collision- or pressure broadening which is a consequence of the 
statistical distribution of the molecular collision frequency. The 
pressure broadening of  a line is proportional to p i n .  

For the 10.6 - laser line of C02 (transition 00'1 + IO'O), the following 
values result: 

Natural line width AS" 67Hz,  
Doppler width (300 K, 45 mbar) 
Pressure width (300 K, 45 mbar) 

A $ D =  58MH2, 

A gP =323 MHz . 

Under laser conditions there are going t o  be smaller values for the line 
width. This is  not, however, within the scope of this paper. At ambient 
temperatures and at higher temperatures, the natural line width i s  always 
negligible compared to  the two other influences. In thinned gases, the 
pressure broadening i s  often small compared to the Doppler broadening, 
but depending on temperature, it can also reach the same magnitude. If 
one takes into account only the Doppler broadening when determining the 
line form, then the error isn't large even in the latter case, because the 
line form in the vicinity of the middle of the line i s  primarily determined 
by the Doppler broadening. The line form function at the middle of  the line 
is  then 

In the following, the term "small signal amplification" is meant to mean 
the small signal amplification in the center of a pure, Doppler-broadened 
spectral line. Weight g of an energy level j is the number of solutions 
of the Schrodinger equation which exist for the corresponding energy 
amount; it, therefore, corresponds at the same time to the degree of 
degeneration. The C02-molecule has three vibrational degrees of freedom, 
one of which, namely the bending vibration, exhibits a twofold 
degeneration. Each given vibrational state can, therefore, be described by 
four quantum numbers which are expressed by 

J 

1 
v1 "2 v3 

where 1 stands for the quantum number of the angular moment which is 
tied to the quantum number v2 by the rule 3-9 



v2 even 9 1  = v2, v2-2 ,......., 0 
~2 Odd 3 1 = ~ 2 ,  ~ 2 - 2  ,....... , 1 

A l l  vibrational states with 1 = 0 , therefore, have the weight of 1 and al l  
vibrational states with 1 > 0 have the weight of 2. The simplest 
selection rules for optically permissable vibrational transitions are 

A V ~  - even, ~ 1 =  0 , hv3 odd 
Av2 - odd , A1 = 1 , Av3 even. 

Aside from this, there i s  a multitude of other optically permissable 
transitions. Al l  transitions, however, l ie  in the medium to  the far infrared 
region. Pure vibrational transitions are seldom observed. With most 
spectral lines, one deals wi th rotational vibration transitions. Not only 
does the vibrational state of the molecule change, but also i ts  rotational 
state. Differentiations are made among P-, Q-, and R-transitions where 
the corresponding letters are followed by the rotational quantum number 
which would enter i tself  for the molecule after the emission of a light 
quantum. The letters stand for the following changes in state: 

J even A J =  + 1  P -  Branch, 
J either AJ = 0 Q - Branch, 
J even A J =  - 1  R - Branch. 

The occupation density distribution of rotational degrees of freedom has a 
maximum Jmax for certain rotational quantum numbers. This depends on 
the rotational temperature (which for the model at hand i s  assumed to  be 
equal to  the translational temperature), when it is  a matter of equilibrium 
distribution. This i s  also assumed for the model at hand. At room 
temperature, the transitions of the strongest intensities for the 
C02-molecule l i e  at P20 and R20. This corresponds to  transitions wi th 
J = 19 -20 and J = 21 4 2 0 .  

The rate equations for the reaction system were determined under the 
assumptions that the vibrational degrees of freedom of the C02-molecule 
influence one another only through reactions of the second order and that 
the reaction velocity constants for the levels of a vibrational degree of 
freedom do not depend on the vibrational states of other vibrational 
degrees of freedom. 



In this sense, for example, the reactions 

00'0 + M + A E  00'1 + M 

v1  v 2 1  0 + M + A E  V, v 2 '  1 + M 

are equivalent. The population density of a given level is then given by the 
expression 

n stands for the particle density of C02, and v (XI stands for the 
probability that a C02-molecule finds i tself  in the vibrational state x . 
For state 03'0, one obtains the population density 

The state Ov2O0 for odd v2 is not real, it presents only formal help. 

. .  3.4. Ufect of SuDeriqpns&&glWon F i e l a  

Now the effect of an approximately resonant radiation field w i l l  be 
considered which acts perpendicular to the direction of flow. Let this 
I ield have the spectral radiation density Lv* on one spectral line ?jk. 
Between the participating energy levels, the energy flow 

is thus created. After dividing by the molecular energy difference 
between the energy levels, one obtains the concentration change of the 
vibrational levels for 

* This designation corresponds to  DIN 5496 "Temperature Radiation'; 
instead many papers generally use the designation "Intensity' and the 
formula symbol I+ 6 /  



The positive sign is  meant for the lower level which becomes more 
populated by the transition; and the negative sign stands for the upper 
level which becomes emptied. The energy difference between the two 
levels is  obtained from 

AEjk * h * vjk NA , 

where NA = 6.023 X 
flow due to radiation must be given consideration in the equation for 
vibrational energy because the emitted light quanta generally depart from 
the flow. 

mol-' is Avogadro's constant. Finally, the energy 

With this kinetic model for the vibrational energy exchange in flowing gas 
mixtures which contain C02, H20 , N2 , O2 , and He , it is  possible to  
investigate a mu1 t i tude of processes. They include heating and cooling 
processes, excitation by high frequency, relaxation processes after 
gas-dynamic collisions and gas-dynamic C02-lasers. In the following 
chapter, the presented model wi l l  be applied to some examples. 



4. App l l ca t iw  

With the help of the kinetic model for the C02 , H20 , N2 , 02 , and He 
mixture, it i s  possible to  investigate radiation transitions of the 
C02-molecule for their potential laser fitness. The model wi l l ,  first of 
all, be checked w th the help of known data for a cross-current C02-laser 
wi th HF-impulse. Then, additional laser transitions, activated by various 
pump methods, w 11 be investigated. 

- 
2-' aSer w'th HF '- 4.1. Mculat ion o f  a CrpSs - Current CQ 

The subject of this chapter is the testing of the developed model using the 
data for a cross-current C02-laser wi th high-frequency inpulse. For this 
case, there are various experimental results available in literature. An 
accurate description of such a laser can be found in Jacoby [SI. With the 
help of Fig. 4.1 .- 1, the operational principle w i l l  be explained. A CO2 - N2 
-He mixture in the ratio of C02:N2:He = 0.044 : 0.186 : 0.77 flows through 

Fig. 4.1.-1 

Schematics and technical data for a cross-current C02-laser wi th  high- 
frequency impulse, according to  Jacoby [91. 63 



a rectangular channel of constant diameter, and passes, first of all, 
through an impulse distance where the vibrational degrees of freedom of 
C02 and N2 are subjected t o  energy in form of electromagnetic 
high-frequency radiation. The flow carries the HF-discharge downstream. 
In the model, this process is taken into account by assuming a discharge 
current density passage across the path of flow. Armandillo, Kaye [ IO] 
propose the passage which is given by 

j ( x )  = j o * n * - - . s i n ( n *  X -1 X 
XA XA 

jo stands for the median current density in the region o Lhe impu se 
which stretches along path x,+ Fig. 4.1 .-2 shows the dependence of this 

‘O < 

Fig. 4.1.-2 

Dragging of the impulse distance by the current, according to  Amandillo, 
Kaye [ IO]. 

distance XA on the current velocity. In the case at hand, one obtains by 
extrapolation an impulse distance xA = 6 cm in length. In the electrical 
f ield of the impulse distance some electrons which happen to be there, are 



accelerated and liberate additional electrons through collisions wi th gas 
particles. I f  field strength E is suitably chosen, then the collisions wi th 
electrons result in an excitation of the vibrational degrees of freedom. 
For this process, the Boltzmann equation was solved by Nighan [ 1 11. The 
results can be found in the form of excitation coefficients for the 
individual vibrational degrees of freedom. These calculations as well as 
the experimental results by Novgorodov, e t  a l i i  1251 show that the velocity 
spectrum of the electrons under these conditions can no longer be 
described with the help of a Maxwell distribution. 

With the help of a simple approximation, one obtains the excitation 
coefficients even without the Boltzmann equation. For this it is assumed 
that the velocity spectra of the electrons parallel and perpendicular to the 
field lines can be described by differing Maxwell distributions. These 
calculations are carried out in Appendix 8. The excitation coefficients 
thus gained, agree we1 1 wi th the results by Nighan. As a result of the 
HF-impulse, a crowding of the vibrational state 00' I of C02 comes about 
compared t o  the states 10'0 and 02'0, which makes the liberation of 
electromagnetic radiation with the help of  a resonator possible. With the 
help of the model at hand, Fig. 4.1 .-3 shows the calculated passage of the 
small signal amplification along the path of flow for the radiation 
transition 00'1 + 10'0. The wave length h = 10.5915 pm belongs to 
this transition P 20. The calculations agree well with the measurements 
published by Jacoby 191. Figs. 4.1.-4 to 4.1.-7 show that, in this case, al l  
participating vibrational degrees o f  freedom display disturbances in the 
Boltzmann distribution. This i s  attributed mainly to the high-frequency 
impulse. 

The relationship (2.3.-2) is no longer valid for the transition probability 
due to electron collisions. The excitation rates due to high-frequency 
impulse are, moreover, substantially larger than the transfer rates 
through collisions with other gas particles, so that certain vibrational 
energy levels were given preferred excitation. To a smaller extent, the 
disturbances in the Boltzmann distribution are caused by the influence of 
VV-reactions. The disturbance of the Boltzmann distributions of the laser 
levels is of special significance. Without the strong disturbances of the 
asymmetrical valence modes of c02J a substantially lower small signal 
amplification would have been expected. 



0 Experiment according to Jacoby [9] 

go [llm] 

2 -  

0 Experiment 
noch Jocoby 191 

0 1 2 3 L 5 x l c m l  6 

Fig. 4.1 .-3 

Trace of small signal amplification in a cross-current C02-laser 
according t o  Jacoby [91 for the crossing 00'1 410 '0 ,  P20 with a 
wavelength of 10.591 5 prn. 

0 L 6 8 n  

Fig. 4.1.-4 

Trace of of the occupation density distribution in the cross-current C02- 

laser according to Jacoby [9] for the symmetrical valence oscillation of 
C02 without the effect of a radiation field. 
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Fig. 4.1 .-5 

Trace of the occupation distribution density in the cross-current C02- 

laser according to Jacoby [9] for the deformation oscillation of C02 

without the effect of a radiation field. 
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Fig. 4.1 .-6 

Trace of the occupation density distribution in the cross-current COP- 
laser according to Jacoby [9] for the asymmetrical valence oscillation of 
CO2 without the effect of a radiation field. 
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Fig. 4.1.-7 
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Trace of the occupation density distribution in the cross-current COIL- 
laser according to Jacoby [9] for nitrogen without the effect of a radiation 
field. 



. .  
2- Crosslnas 4.2. m i n a t i o n  of 

With the help of electrical discharges, one can easily activate the C02- 
laser crossings 00' 1 + 10'0 at 10.6 pm, and 00' 1 302 '0 at  9.6 pm in 
CO2-conttaining gas mixtures. Given by the level position, one can expect a 
maximum efficiency of about 40%. For this reason, C02-laser systems 
have gained substantial importance, among other fields, in the processing 
o f  materials. Because of level position and selection rules for radiation 
crossings, one can imagine lasers with much higher efficiencies. We are 
talking about lasers with crossings of 02'0+0110 at 16 pm and 10'0 - 
01 '0 at 14 pm. In addition, the 16pm-laser is  of  special importance. In 
this case, there is  the possibility t o  radiate UF6 in an isotope-selective 
manner and thus separate the isotope. A method for the generation o f  the 
necessary 16pm-radiation was proposed by Wexler, e t  a l i i  t121. In this 
method, the inverted medium i s  discharged above the 9.6 pm-line. Thus 
the upper laser level i s  populated for the 16pm-crossing so that one can 
expect an Inversion. With the help o f  the model at  hand, we shall now 
examine whether or not this expectation becomes fulfilled. The laser 
described in the previous section, w i l l  now be utilized as the 9.6 
ym-laser. With this laser, one can reach a radiation f ield wi th an 
intensity o f  at least 600 W/cm2 at the 9.6 pm-crossing. Calculations 
w i th  the model at hand show that the necesary prerequisites for the 16 
ym-crossing can, indeed, be attained in this manner. Fig. 4.2.- 1 shows the 
trace of the amplification for the 9.6 ym-line and the trace o f  the small 
signal amplification for  the 16 pm-line. This calculation assumed that 
the 9.6 pm-laser beam has an expansion of 2 cm in the direction of  flow, 
and that the corresponding resonator i s  placed in the vicinity o f  maximum 
small signal amplification. Fig. 4.2.-2 t o  4.2.-5 show the traces of the 
occupation density distribution of the individual vibrational degrees o f  
freedom in the effective zone of the radiation field. Fig. 4.2.-3 shows that 
there is, on account of the radiation field, an almost undisturbed 
Boltzmann distribution for the deformation oscillation 92 . A similar 
calculation was carried out for the examination of the 14 prn- 
crossing. In this case, the flow medium was discharged above the 10.6 pm 
crossing, thus populating level 10'0. Fig. 4.2.-6 shows that in this 
manner, a very high small signal amplification for the 14 prn-line i s  
obtained. 
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Fig. 4.2.-1 

Signal amplification for the crossing 00' 1 3 02'0 , P20 with 

signal amplification for the crossing 02'0~01'0, P20 with 
X = 16.160 1 pm in the C02-laser according to Jacoby 191. 

= 9.5525 pm at  a spectral radiation density of 600 W/cm2 and a small 
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Fig. 4.2.-2 

Trace of the occupation density distribution in the cross-current 
C02-laser according to Jacoby [91 for the symmetrical valence oscillation 
of C02 at a spectral density of  600 W/cm2 with = 9.5525 pm. 
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Fig. 4.2.-3 

Trace of the occupation density distribution in the cross-current 
C02-laser according to Jacoby [91 for the deformation oscillation of C02 

at a spectral density of 600 W/cm2 with h = 9.5525 Vm. 
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Fig.4.2.-4 

Trace of the occupation density distribution in the cross-current 
COZ-laser according t o  Jacoby [9] for the asymmetrical valence oscillation 

of C02 at a spectral density of 600 W/cm2 with A = 9.5525 pm. 
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Fig. 4.2-5 

Trace of the occupation density distribution in the cross-current 
C02-laser according to Jacoby [9] for nitrogen at a spectral density of 600 
W/cm2 with h = 9.5525 Urn. 
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Fig. 4 . 2 ~ 6  

Signal amplification for the crossing 00'1 3 10'0, P20 with 

signal amplification for the crossing 10'0+ 01 '0, P20 with 
= 13.8730 pm in the C02-laser according to Jacoby 191. 

h = 10.59 15 pm at a spectral radiation density of 600 W/cm2 and small 
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Fig. 4 . 2 ~ 7  t o  4.2.- IO show the traces of the occupation density 
distributions in the effective zone of the 10.6 pm-radiation field. Here 
again, it becomes evident that the lower laser level 10'0 for the 10.6 pm- 
radiation becomes so strongly populated that an almost undisturbed 
Boltzmann distribution emerges for the respective I? -mode. Based on the 
calculation wi th the help of the model at hand one can assume that these 
concepts are promising for the 16 ym- and the 14 ym-laser. One can 
expect that even larger small signal amplifications can be attained with 
the help o f  more suitable gas mixture ratios and at a different ini t ial  
pressure. A certain difficulty, however, could be that the zone where one 
can expect inversions for the second beam crossing, lies only within the 
region of  the f i rst  radiation field. 
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0 2 4 6 d n  

Fig. 4.2.-7 

Trace of the occupation density distribution in a cross-current C02-laser 
according to  Jacoby [9] for  the symmetrical valence oscillation of' C02 at a 
spectral radiation density of 600 W/cm2 with A= 10.59 15 pm. 

73 



0 4 6 d n  

Fig. 4.2.-8 

Trace of the occupation density distribution in a cross-current C02-laser 
according to Jacoby [91 for the deformation oscillation of C02 at a 

spectral radiation density of  600 W/crn2 with h =  10.5915 vm. 

-n 

Fig. 4.2.-9 

Trace of the occupation density distribution in a cross-current C02-laser 
according to  Jacoby [9] for the asymmetrical valence oscillation of CO2 at 

a spectral radiation density of 600 W/cm2 with 1 = 10.59 15 urn. 
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Fig. 4.2.-10 

Trace of the occupation density distribution in a cross-current C02-laser 
according to Jacoby [9] for nitrogen at a spectral radiation density of 
600 W/cm=! w i th  A =  10.5915 pm. 

4.3 Jnversions in Compressjon Flow, 

Due to the sometimes very different collision excitation rates of the 
vibrational degrees of freedom of C02 wi th other gas particles, one can 
suspect that, at rapid compressions of CO2-conttaining gas mixtures, there 
can arise inversions between two rotational vibration states which are in 
contact wi th  one another by means of a radiation crossing. Gases suffer 
rapid compressions, for example, a t  the passing of gas-dynamic collisions. 
The relationship of the state before the collision and the state after the 
collision is  given by the Rankine-Hugoniot equations. Experiments show 
that in a wide region for the collision mach number, the translation- 
rotation relaxation zone and the vibrational relaxation zone are markedly 
separated from one another. Using the adiabatic exponent K = 7/5 and 
w i th  the help of the Rankine-Hugoniot equations, one obtains the state 
prior to the vibrational relaxation. Losev [ 131 gives two radiation 
crossings in which inversions are to  be expected in the vibrational 
relaxation zone after a collision with a collision Mach number of Ma = 4 at 



the init ial pressure of  p1 = 6 Torr in  a gas mixture of 10% C02 ,88$ N2 , 
and 2% H20. Here we deal with the crossings 04'0 -00' 1 and 20'0 7 

00'1. The corresponding wavelengths l i e  at 50 pm and 22 pm. Losev gives 
measurements which show that the expected inversions actually take 
place. With the help of a simplified model, Losev also obtains inversions 
numerically for these radiation crossings. The results o f  these 
calculations, however, don't agree too well wi th the results o f  the 
experiments. Losev explains this with the very short measuring times for 
the collision tube experiments and the measuring errors which become 
possible due to the cut-off at such large wavelengths. 

The kinetic model used for this paper, was then used for the previously 
described collision tube flow. The results of these calculations and the 
results by Losev are compared to  one another in Fig. 4.3.- 1. One can see 
that the results of the model at hand agree better wi th the measurements 
than the results o f  the model by Losev. 

Fig. 4.3.-1 

Trace of the occupation density difference for the crossings 04'0 +OO' 1 , 
P32 with = 22.32 IO pm 
after a col1 ision wi th coil ision mach number Ma = 4, init ial pressure of 
8 mbar in 10% C02 - 2% H20 - 883 N2. 

model at hand, 
model by Losev [ 131, 

. - .  - .  -measurements by Losev. 

= 50.1940 j.tm and 00'0 +00' 1 , P32 with 

------- 
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The better results wi th the model at hand can be taken back to  the 
considerations of disturbances in the Boltzmann distribution. Fig. 4.3.-2 
shows the deviation in the oscillation temperatures for  the individual 
energy levels of C02 (Q3) in contrast to  the median vibration temperature 
for the to ta l  degree of freedom. The Boltzmann distributions for the 
remaining vibrational degrees of freedom don’t appear to be markedly 
disturbed. 
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-50 

- 150 
0 A 6 

Fig. 4.3.-2 

Deviation in the vibration temperature of the individual energy levels from 
the median vibration temperature for the asymmetrical valence oscillation 
of C02 after a col1 ision with the coli ision mach number Ma = 4, initial 
pressure of 8 mbar in 10% C02 - 2% H20 - 88% N2 
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A kinetic model for the vibrational energy exchange in flowing gas 
mixtures was presented. In contrast to  earlier models, no Boltzmann 
distribution was assumed for the occupation density distribution within 
the individual vibrational degrees of freedom. With the help of this model, 
the occurrences in certain gas-dynamic lasers and in the relaxation zone 
after gas-dynamic collisions can be described. The model was checked 
with known data for a cross-current C02-laser with high-frequency 
excitation. The results of these calculations agree very well with the 
experimental results which were gained for the C02-laser. In this 
context, we could show that the occupation density distributions of the 
individual vibrational degrees of freedom cannot be described by 
Boltzmann distributions. We could, furthermore, show that, upon 
discharge of this cross-current C02-laser above the 9.6 ym- and the 10.6 
pm-line, the prerequisites for  the activation of a t 6 pm- and a 14 ym- 
laser can be created. Finally, an investigation was made into whether or 
not one can expect inversions in the relaxation zone after gas-dynamic 
collisions. For this, i t  was shown by two examples that this i s  possible. 



A p p e n d i x  

A Reaction Velocitv Cons- 

For the kinetic model at hand, 44 reacti 
From literature, for about one half of the constants experimental results 
are known which span a wide temperature region. For 9 constants, the 
Millikan-White-Systematics could be utilized. Of  these, 4 constants are 
covered by measured data for some temperatures. There st i l l  remain 12 
velocity constants for VT-reactions which have to  be determined in a 
theoretical manner. Of  al l  theories mentioned in Chapter 3.2 ,  the theory 
of Widom [l4] best reproduces the velocity constants for Vi-reactions for 
which there are experimental results available. Therefore, the theory of 
Widom i s  used to determine those constants for which there are no 
experimental results available. 

velocity constants were needed. 

A - 1 m t a l l v  Deterwed Constants 

According to Chapter 3.2. , the expression 

i s  used for VT-reactions. From experimental results, one obtains the 
coefficients which are listed i n  Table A -1  . For VV- and for V-reactions 
the expression 

i s  used. From experimental results, one obtains the coefficients which are 
listed in Table A - 2.  The sources for the experimental results are given, 
sorted according to reactions in a special literature l ist at the end of this 
paper. 



React ion Equation I *  B 

.251,79 

-109,64 

11.51 

-29.89 

-92.1 

126.7 

-80.5 

-58.72 

-229.8 

-131.92 

-388.7 

-184.21 

- 2 7 4 3 8  

-180.52 

Table A -  1 

7 4 8 ~ 4  

485.89 

0 

46,05 

0 

-1329,O 

34 , 54 

O I  
921 

34?,69 

1093,7 

0 

575,65 

383.89 

43,84 

39.26 

28.18 

29,04 

34,63 

25.50 

38.25 

31.34 

40.16 

33.96 

44.76 

39.24 

42.99 

38,89 

Experimentally determined coefficients for  the reaction velocity 
constants of VT-reactions. 



Reaction Equation 
A 

29,93 

28,09 

9,37 

11.63 

18.53 

19.42 

23,09 

16.63 

16.6 

B 

-0,2756 

-0,0673 

0,3723 

0,303 

0.1855 

0,2346 

-0,2719 

0,2915 

0,2351 

C I 

0,4934.10-2 ’ 
0,983 

o,1992*10-2 

0 

0,228 * lo-‘ 
0,361 5-10-‘ 

0.1 15 - 10-1 
0 

0, 1287*10-2, 

Table A - 2 

Experimentally determined coefficients for the reaction velocity 
constants of VV- and V-reactions. 

- . .  A - 2 &plication of the Millikan White Svstematics 

For a string of reactions, there are either only a few direct experimental 
results, or only experimental results for the same reaction with other 
collision partners. For these cases, the MW-Systematics can be used i f  
one doesn’t expect any anomalous temperatures for the respective 
reactions. With Equations (2.3.1,-2.) and (3. I.-2.1, one obtains 

wi th the expressions 

A = 36,64 t 1.74 . . e4/3 . v3/4 
B = i,i6  IO-^ . ,, . 4/3 



for the coefficients so that 
estimate shows that the second term of the defining equation for A is 
generally small against the f irst constant term. A is, therefore, nearly 
independent of p and 8 .  A check with the help of experimental results 
shows that the MW-Systematics theory can be applied, in a few cases, to  
multi-atomic molecular gases, i f  the first constant term of the defining 
equation is f i t ted for A itself. In Table A - 3 , the constants for those 
reactions are listed which can be handled with the help of the MW- 

receives the units cm3/mole~sec. An 

Sys t ema t ics. 

React ion Equation 
0 [K] 

1998 

960 

960 

3381 

147 

147 

147 

147 

147 

A 

23,72 

23,72 

23.81 

24,9 

16.72 

16.67 

16,69 

16,7 

14,81 

B 

55.9 

45.45 

47.3 

112,72 - 
4,2113 

3,2167 

3.7228 

3,8736 

3,2998 

Table A -  3 

Constants for reaction velocity constants which are determined according 
to the MW-Systematics. 

1 )  MW-Systematics applies t o  the same reaction wi th other reaction 
partners for which there are experimental results. 

2) MW-Systematics was adjusted to the few available experimental data 
by varying A .  With this correction, the other constants for the same 
reaction with other collision partners can be described for which 
there are more experimental results available. 

Reactions wi th H20 as a neutral or  a reactive collision partner wi th the 
help of the MW-Systematics, are not too well described. One exception, 
however, is  the Fermi-Resonance reaction. z? 



A - 3 m l i c a t i o n  of WidQln's Theory 

The velocity constants for which there were no experimental results 
available and which could also not be described by the systematics of 
Millikan, White, were then determined with the help of the theory of 
Widom [14]. The validity of this theory was confirmed by the application 
of reactions for which experimental results were available. This theory 
deals with the exact solution of the Sch6dinger equation for Maxwell- 
potentials, meaning the interaction potential in the form of 

For the vibrational relaxation time, one thus obtains 

i f  ko B kT B ic i s  satisfied. ko stands for a form of the cro 
number which can be determined according to 

sing wavt 

where 3 i s  the actual emitted or absorbed wave number, i f  one deals wi th 
permitted crossings. 

In the same sense, kT stands for a thermal wave number which can be 
de t erm ined according to 

n 2 .  k: I 2 p K - T  

where K stands for the Boltzmann constant. Quantity k is a measure for 
the potential stiffness which is  determined from A according to 

Therefore, this quantity also has the dimension of a wave number. 
Quantities p and m stand for the reduced masses of collision and 
oscillation. Based on the relationship A212 = AI  I.A22 ,one obtains E 
at binary collisions from 

8.3 



The values of k for the individual molecular comuIl,ations are mos 
reliably obtained from experimental results. Thus one can draw 

.LA-'; 
4,98 * 1 
4.86 
4.91 
4,55 
1.66 

3,19 * 
2.5 
3.93 
3.64 I 1.33 

6.5 * 
5.55 
5,61 * 
5.2 
1 s9 

4,3 
3.54 * 
4.29 
1,99 

4 ,87 
4.41 
4,72 
4,4 
2,4 

4.51 
4,29 
4 94 
4 , l  * 
1.9 

I 

4.81 

t 

conclusions about the relaxation time of other molecular combinations for 
which there are no experimental results available, and which can also not 
be treated with the help of the MW-Systemat ics. 

Combination 
co, (v, 1 - co, 

HZ 0 
N, 
0 2  
He 

Table A - 4 

1388 
1388 
1388 
1388 
1388 

667 
667 
667 
667 
667 

2349 
2349 
2349 
2349 
2349 

1595 
!595 
1595 
159s 
1595 

2331 
2331 
2331 
2331 
2331 

1556 
1556 
1556 
1556 
1556 

22 
12,7742 
17,1111 
18,5263 
3,6667 

22 
12,7742 
17.1111 
18,5263 
3,6667 

22 
12,7742 
17,1111 
18,5263 
3,6667 

12,7742 
9 

10,9565 
11.52 
3.2727 

17,1111 
10,9565 
14 
14,9333 
3.5 

18,5263 
11.52 
14,9333 
16 
3,5556 

I 

m[g/mol] 

8 
a 
a 
8 
8 

8,7273 

a , 7 m  
8,7273 
a,7273 

a,7273 
8,7273 
8,7273 
a,7273 
8,7273 

0,7273 

1,7778 
1,1778 
1,7778 
1,7778 
1,7778 

7 
7 
7 
7 
7 

a 
a 
a 
a 
a 

Molecular data which are needed for the application of the theory of 
Widom. Values for IC marked with an asterisk (*I were adjusted to  
experimental results for the reaction velocity constant. 



For a\\ degrees of freedom for CO2, the value %e-~e'O.306 A-' was used 
which is calculated from C02(q2),He with the value lP3* 19 A-' for 
C02(v2) ,C02. From other experimental results wi th He as a collision 
partner, one obtains a mean of 

K = 0,59 A-' He-He 

Based on the structure of the CO2-rnolecule and i t s  own vibrational form, 
one could expect that there would be a different value for !C for each 
vibrational degree of freedom. For reactions with C02 as collision 
partner, the arithmetic mean of all three values of IC was used as the 
parameter. It is 

%o, 40, = 4.89 A-' 

As a result of the factor cos-2 ( <- +I%, the relaxation time for 
certain Ic-values grows beyond all limits. For many molecular 
combinations, IC lies in the vicinity of such poles so that the relaxation 
time is very sensitive to  small changes in IC . 

The paths of the reaction velocity constants thus determined, are adjusted 
to a curve in the form of 

wi th the help of the least squares method. For the st i l l  missing reactions, 
one obtains the coefficients A , B , and C in accordance with Table A - 5. 



Reaction Equation - 
cot 
CO,(o)(vl)tN, 41388 cm” CO,(l)(vl)+N, 

CO,(o)(~l)+O, t1388 cm’l c CO,(l)(vl)+O, 

CO, ( O )  ( v3) +H, Ot2349 cm” S CO, ( (v3 )+H, 0 

C0,(o)(w3)+0, t2349 cm-l z C0,(1)(v3)+0, 
H, 0“) (il,) +CO, +1595 cm-l H,O( ) (  v2)+C0, 

H,0(o)(w2)+0, t1595 cm-l 4 H,0(1)(u2)+0, 

N,“) +C0,+2331 cm” Nz(’) tC0, 

(vl ) tH,O+ 1388 cm-l 3 CO, ( )(vl )+H, 0 

NZ(” +O, +2331 cm-l N, ( l )  +02 

0, ( O )  40 ,  t 1556 cm-l $ 0, ( l )  40, 

0, ( O )  +H,0+1556 cm-l 0 2 ( 1 )  +H,O 

0, ( O )  +N, +1556 cm“ t 0, +N, 

Table A - 5 

A -- 
42.85 

42.75 

41.94 

38.37 

37.17 

43.23 

43,21 

38.44 

39.48 

38.33 

41.98 

41,31 

B 

- 201.5 
- 211.5 
- 220.9 
- 169.9 
- 191.0 
- 197,O 
- 201,4 
- 193,8 
- 195.8 
- 217.5 
- 202.8 
- 211.0 

c /  
t , 

582.6 I 

613.9 

641.2 

478,9 

543,l 

572.9 

585.0 

552.6 I 

559.9 

630.5 

588.9 

610,4 

I 

I 

I 

Coefficients of reaction velocity constants which were calculated 
according to the theory of Widom. 



. .  B Flectrical Impulse W f i c i e n b  

The velocity spectrum of the electrons in the HF-impulse path of  the laser 
cannot be described accurately enough by a Maxwell distribution with a 
translational temperature. For the total of  a l l  the electrons, there are 
deviations from a Maxwell distribution whose magnitude depends on the 
electron energy. An attempt is  now made to  describe the velocity 
spectrum of the electrons with the help of a Maxwell distribution which 
has two temperature parameters. For this, one electron temperature each 
i s  defined in  the direction of the field lines, and the other electron 
temperature is defined perpendicular thereto, so that the valid 
distribution function is 

wi th the coefficients 

The velocity distribution of the molecules is described by the Maxwell 
distribution 

with the coefficients 

The relative velocity between a molecule and an electron is 

When the electron temperature in the direction of the field lines (z-axis) 
is much greater than that perpendicular thereto, and is greater than the 
gas temperature, then the following relationship is valid as an 
approximat ion 

g = v z  . 



The impulse coefficient is then obtained by 

Here, Q stands for the effective cross section. After integration over 
w , vx , and vy , one obtains 
+ 

+ m  

2 2  
-c 

kM,e Q (v,) V z  * (Bz/ n) exp(- I ,  - vz ) d vz . 
- O D  

The portion of electrons with a velocity between vz and vz + dv, is 

d c 2 (0, ' V z )  * exP [-(B, V z ) * ]  d ( B Z v Z )  

The median electron energy Is then 

One obtains for the median electron energy in terms of eV units 

- l k  
2 e  

U - - .  Tz 

With this, one can express the impulse coefficient by 

The effective cross sections Q(u) for the electron collision excitation 
were taken from literature [ 15, 161. The impulse coefficlents thus 
determined, are presented in Fig. B - 1. The traces found by Nighan [ 1 11, 
are given as a comparison in Fig. B - 1. Within the reference of generally 
acceptable accuracies for kinetic data, there is  good agreement. Thus it 



1 

Fig. B - 1 

Impulse coefficients for the vibrational degrees of freedom of C02 and N2 
due to electron collisions. 

model at hand, 

Nighan I1 1 I. ---------- 

appears justified to drop the involved calculation of Nighan [ 1 11 and to 
determine the median kinetic parameters independent of one another. 

With the help of Equation (B - I ) ,  one obtains the kinetic parameters as 
they have been presented in Fig, B - 1 and B - 2. The impulse 
coefficients of al l  other levels and vibrational degrees of freedom can, on 
the other hand, be neglected, 



vz 1 

0 1 2 OIeVl 3 

Fig. B - 2 

Impulse coefficients for N2 (v=l , v=8) according to theory under review. 
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i iterature I n d w  

A special literature index for the kinetic data is given following this index, 
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